U-shaped networks are widely used in various medical image tasks, such as segmentation, restoration and reconstruction, but most of them usually rely on centralized learning and thus ignore privacy issues. To address the privacy concerns, federated learning (FL) and split learning (SL) have attracted increasing attention. However, it is hard for both FL and SL to balance the local computational cost, model privacy and parallel training simultaneously. To achieve this goal, in this paper, we propose Robust Split Federated Learning (RoS-FL) for U-shaped medical image networks, which is a novel hybrid learning paradigm of FL and SL. Previous works cannot preserve the data privacy, including the input, model parameters, label and output simultaneously. To effectively deal with all of them, we design a novel splitting method for U-shaped medical image networks, which splits the network into three parts hosted by different parties. Besides, the distributed learning methods usually suffer from a drift between local and global models caused by data heterogeneity. Based on this consideration, we propose a dynamic weight correction strategy (\textbf{DWCS}) to stabilize the training process and avoid model drift. Specifically, a weight correction loss is designed to quantify the drift between the models from two adjacent communication rounds. By minimizing this loss, a correction model is obtained. Then we treat the weighted sum of correction model and final round models as the result. The effectiveness of the proposed RoS-FL is supported by extensive experimental results on different tasks. Related codes will be released at https://github.com/Zi-YuanYang/RoS-FL.
translated by 谷歌翻译
Anomaly detection and localization are widely used in industrial manufacturing for its efficiency and effectiveness. Anomalies are rare and hard to collect and supervised models easily over-fit to these seen anomalies with a handful of abnormal samples, producing unsatisfactory performance. On the other hand, anomalies are typically subtle, hard to discern, and of various appearance, making it difficult to detect anomalies and let alone locate anomalous regions. To address these issues, we propose a framework called Prototypical Residual Network (PRN), which learns feature residuals of varying scales and sizes between anomalous and normal patterns to accurately reconstruct the segmentation maps of anomalous regions. PRN mainly consists of two parts: multi-scale prototypes that explicitly represent the residual features of anomalies to normal patterns; a multisize self-attention mechanism that enables variable-sized anomalous feature learning. Besides, we present a variety of anomaly generation strategies that consider both seen and unseen appearance variance to enlarge and diversify anomalies. Extensive experiments on the challenging and widely used MVTec AD benchmark show that PRN outperforms current state-of-the-art unsupervised and supervised methods. We further report SOTA results on three additional datasets to demonstrate the effectiveness and generalizability of PRN.
translated by 谷歌翻译
Out-Of-Distribution (OOD) detection has received broad attention over the years, aiming to ensure the reliability and safety of deep neural networks (DNNs) in real-world scenarios by rejecting incorrect predictions. However, we notice a discrepancy between the conventional evaluation vs. the essential purpose of OOD detection. On the one hand, the conventional evaluation exclusively considers risks caused by label-space distribution shifts while ignoring the risks from input-space distribution shifts. On the other hand, the conventional evaluation reward detection methods for not rejecting the misclassified image in the validation dataset. However, the misclassified image can also cause risks and should be rejected. We appeal to rethink OOD detection from a human-centric perspective, that a proper detection method should reject the case that the deep model's prediction mismatches the human expectations and adopt the case that the deep model's prediction meets the human expectations. We propose a human-centric evaluation and conduct extensive experiments on 45 classifiers and 8 test datasets. We find that the simple baseline OOD detection method can achieve comparable and even better performance than the recently proposed methods, which means that the development in OOD detection in the past years may be overestimated. Additionally, our experiments demonstrate that model selection is non-trivial for OOD detection and should be considered as an integral of the proposed method, which differs from the claim in existing works that proposed methods are universal across different models.
translated by 谷歌翻译
Contrastive Language-Image Pre-trained (CLIP) models have zero-shot ability of classifying an image belonging to "[CLASS]" by using similarity between the image and the prompt sentence "a [CONTEXT] of [CLASS]". Based on exhaustive text cues in "[CONTEXT]", CLIP model is aware of different contexts, e.g. background, style, viewpoint, and exhibits unprecedented robustness against a wide range of distribution shifts. However, recent works find further fine-tuning of CLIP models improves accuracy but sacrifices the robustness on downstream tasks. We conduct an empirical investigation to show fine-tuning will corrupt the context-aware ability of pre-trained CLIP features. To solve this problem, we propose Context-Aware Robust Fine-tuning (CAR-FT). CAR-FT regularizes the model during fine-tuning to capture the context information. Specifically, we use zero-shot prompt weights to get the context distribution contained in the image. By minimizing the Kullback-Leibler Divergence (KLD) between context distributions induced by original/fine-tuned CLIP models, CAR-FT makes the context-aware ability of CLIP inherited into downstream tasks, and achieves both higher In-Distribution (ID) and Out-Of-Distribution (OOD) accuracy. The experimental results show CAR-FT achieves superior robustness on five OOD test datasets of ImageNet, and meanwhile brings accuracy gains on nine downstream tasks. Additionally, CAR-FT surpasses previous Domain Generalization (DG) methods and gets 78.5% averaged accuracy on DomainBed benchmark, building the new state-of-the-art.
translated by 谷歌翻译
The role of mobile cameras increased dramatically over the past few years, leading to more and more research in automatic image quality enhancement and RAW photo processing. In this Mobile AI challenge, the target was to develop an efficient end-to-end AI-based image signal processing (ISP) pipeline replacing the standard mobile ISPs that can run on modern smartphone GPUs using TensorFlow Lite. The participants were provided with a large-scale Fujifilm UltraISP dataset consisting of thousands of paired photos captured with a normal mobile camera sensor and a professional 102MP medium-format FujiFilm GFX100 camera. The runtime of the resulting models was evaluated on the Snapdragon's 8 Gen 1 GPU that provides excellent acceleration results for the majority of common deep learning ops. The proposed solutions are compatible with all recent mobile GPUs, being able to process Full HD photos in less than 20-50 milliseconds while achieving high fidelity results. A detailed description of all models developed in this challenge is provided in this paper.
translated by 谷歌翻译
Headline generation is a task of generating an appropriate headline for a given article, which can be further used for machine-aided writing or enhancing the click-through ratio. Current works only use the article itself in the generation, but have not taken the writing style of headlines into consideration. In this paper, we propose a novel Seq2Seq model called CLH3G (Contrastive Learning enhanced Historical Headlines based Headline Generation) which can use the historical headlines of the articles that the author wrote in the past to improve the headline generation of current articles. By taking historical headlines into account, we can integrate the stylistic features of the author into our model, and generate a headline not only appropriate for the article, but also consistent with the author's style. In order to efficiently learn the stylistic features of the author, we further introduce a contrastive learning based auxiliary task for the encoder of our model. Besides, we propose two methods to use the learned stylistic features to guide both the pointer and the decoder during the generation. Experimental results show that historical headlines of the same user can improve the headline generation significantly, and both the contrastive learning module and the two style features fusion methods can further boost the performance.
translated by 谷歌翻译
Generative Knowledge Graph Construction (KGC) refers to those methods that leverage the sequence-to-sequence framework for building knowledge graphs, which is flexible and can be adapted to widespread tasks. In this study, we summarize the recent compelling progress in generative knowledge graph construction. We present the advantages and weaknesses of each paradigm in terms of different generation targets and provide theoretical insight and empirical analysis. Based on the review, we suggest promising research directions for the future. Our contributions are threefold: (1) We present a detailed, complete taxonomy for the generative KGC methods; (2) We provide a theoretical and empirical analysis of the generative KGC methods; (3) We propose several research directions that can be developed in the future.
translated by 谷歌翻译
通过自我监督的学习预先训练的大型语言模型在各种各样的任务上表现出令人印象深刻的零击功能。在这项工作中,我们介绍了Welm:一种针对中文的精心读取的预训练的语言模型,能够无缝执行不同类型的任务,以零或几次演示。 Welm通过“阅读”涵盖广泛主题的精选高质量语料库来接受10b参数的培训。我们表明,韦尔姆拥有有关各种领域和语言的广泛知识。在18个单语(中文)任务中,WELM可以大大优于现有的预训练模型,尺寸相似,并匹配高达25倍大的模型的性能。韦尔姆还表现出强大的多种语言和代码转换理解的能力,优于预先对30种语言进行预培训的现有多语言模型。此外,我们收集了人工编写的提示,并通过多次培训进行了大量的中文和微调韦尔姆的监督数据集。最终的模型可以实现对看不见的任务类型的强烈概括,并在零射门学习中优于无监督的韦尔姆。最后,我们证明韦尔姆具有解释和校准自己的决策的基本技能,这可能是未来研究的有希望的方向。我们的模型可以从https://welm.weixin.qq.com/docs/api/应用。
translated by 谷歌翻译
回答有关知识图(KG)的复杂查询是一项重要但具有挑战性的任务,因为在推理过程中存在KG不完整问题和级联错误。最近的查询嵌入(QE)方法将实体和关系嵌入kg中,并将一阶逻辑(fol)查询纳入一个低维空间,从而通过密集的相似性搜索来回答查询。但是,以前的作品主要集中在目标答案上,忽略了中间实体的实用性,这对于缓解逻辑查询答案中的级联错误问题至关重要。此外,这些方法通常是用自己的几何或分配嵌入设计的,以处理逻辑运算符,例如联合,交叉路口和否定,并牺牲了基本操作员的准确性 - 投影,他们无法吸收其他嵌入方法,以使其吸收其他嵌入方法楷模。在这项工作中,我们提出了一个神经和象征性的纠缠框架(ENESY),以进行复杂的查询答案,这使神经和象征性推理可以相互增强以减轻级联错误和kg不完整。 Enesy中的投影操作员可以是具有链接预测能力的任何嵌入方法,并且其他FOL操作员无需参数处理。随着神经和象征性推理的结果,合奏中的Enesy答案查询。 Enesy在几个基准上实现了SOTA性能,尤其是在培训模型的设置中,仅具有链接预测任务。
translated by 谷歌翻译
对抗性训练(AT)通常被认为是防御对抗性例子的最有效的方法之一,可能会在很大程度上损害标准绩效,因此对工业规模的生产和应用的有用性有限。令人惊讶的是,这种现象在自然语言处理(NLP)任务中完全相反,在该任务中甚至可以从中受益。我们注意到NLP任务中AT的优点可能来自离散和符号输入空间。为了借用NLP风格的优势,我们提出了离散的对抗训练(DAT)。 DAT利用VQGAN改革图像数据以离散类似文本的输入,即视觉单词。然后,它可以最大程度地减少这种离散图像的最大风险,并具有符号对抗扰动。我们从分布的角度进一步提供了解释,以证明DAT的有效性。作为增强视觉表示的插件技术,DAT可以在多个任务上取得重大改进,包括图像分类,对象检测和自我监督学习。尤其是,该模型通过胶带自动编码(MAE)预先训练并由我们的DAT进行微调,而没有额外的数据可以在Imagenet-C上获得31.40 MCE,并且在Stylized-Imagenet上进行了32.77%的TOP-1准确性,建立了新的状态 - 艺术。该代码将在https://github.com/alibaba/easyrobust上找到。
translated by 谷歌翻译